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Abstract 
 

In order to optimize systems, systems engineers require some sort of measure with which to 

compare vastly different system components. One such measure is system exergy, or the usable 

system work. Exergy balance analysis models provide a comparison of different system 

configurations, allowing systems engineers to compare different systems configuration options. 

This paper presents the exergy efficiency of several Mars transportation system configurations, 

using data on the interplanetary trajectory, engine performance, and vehicle mass. The importance 

of the starting and final parking orbits is addressed in the analysis, as well as intermediate hyperbolic 

escape and entry orbits within Earth and Mars’ spheres of influence (SOIs). Propulsion systems 

analyzed include low-enriched uranium (LEU) nuclear thermal propulsion (NTP), high-enriched 

uranium (HEU) NTP, LEU methane (CH4) NTP, and liquid oxygen (LOX)/liquid hydrogen (LH2) 

chemical propulsion.  
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everal space agencies, including NASA, are planning manned exploration of Mars in the upcoming decades. Many 

different mission architectures have been proposed for accomplishing this. It is the role of systems engineers to 

compare and optimize different space transportation systems and components, up to and including full mission 

architectures. To do this, some measure is needed that applies to all systems being compared, even though those 

systems may have considerable differences. Exergy efficiency, or how well a given system can use the work available 

to it, provides a measure to compare different interplanetary transfer systems. 

 

Nomenclature 

a   = semimajor axis 

F   = thrust 

f   = final index 

G   = universal gravitational constant 

𝑔0   = standard acceleration due to gravity at Earth’s surface 

hprop   = enthalpy of the propellant 

Isp   = specific impulse 

i   = initial index 

KE   = kinetic energy 

m   = mass 

ME   =  mass of the Earth 

Mplanet    =  mass of the planet 

Msun    =  mass of the sun 

𝑚0   = initial mass 

�̇�   = mass flow rate 

Mvehicle,initial  =  mass of the vehicle on the pad 

Mvehicle, final  =  injected mass 

PE   = potential energy 

r   = distance, position, radius 

S   = positive/negative sign 

t   = time 

Tengine    =  engine thrust 

V   = velocity 

�̇�   = acceleration 

Ve   = exhaust velocity 

X   = system exergy 

Xdes   = exergy destroyed 

Xexp   = exergy expended 

ηexg   = exergy efficiency 

θ   = true anomaly 

µ   = gravitational parameter 

φ   = horizon-relative flight angle 

 

 

S 
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1. Exergy Balance Relationship 

Planetary transfer vehicles (i.e., satellites, planetary landers, and human and cargo transports as illustrated in Fig. 

1) are integrated by system exergy. This includes their propulsion stages, electrical power systems (e.g., nuclear 

electric or solar electric), and crew volumes for transporting the crew.  During propulsive trajectory changes, the 

exergy balance equation can be written for a spacecraft system as, 

∑ [∆mpropellant (hprop+
 Ve

2

2
)]stages -Xdes= ∑ [(Mvehicle,final

Vvehicle,final
2

2
-Mvehicle,initial

Vvehicle,initial
2

2
) + (

GMEMvehicle,initial

raltitude,initial
-stages

GMEMvehicle,final

raltitude,final
)]                                      (1) 

 

The propulsion engine (e.g., chemical, electric, nuclear thermal) characteristics (mass flow, enthalpy, exhaust 

velocity, and electrical power for electric propulsion) are all included on the left of the equation.  

For coast phases of the flight trajectory, the exergy balance equation simplifies to the basic orbital mechanic’s 

relationship for a balanced system.  In this case the spacecraft energy (and exergy) is constant and the kinetic and 

potential energies increase and decrease in opposite directions.   

 

𝐸𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = (𝑀𝑣𝑒ℎ𝑖𝑐𝑙𝑒
𝑉𝑣𝑒ℎ𝑖𝑐𝑙𝑒

2

2
−

𝐺𝑥𝑀𝐸𝑀𝑣𝑒ℎ𝑖𝑐𝑙𝑒

𝑟𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒
).                (2) 

 

This creates an oscillatory relationship between the vehicle kinetic and potential energies with respect to the 

dominate body (typically the sun in 

interplanetary space).i   

Planetary and solar masses have a large effect on spacecraft exergy in interplanetary space.  It is important to ensure 

an appropriate reference is used.  A heliocentric reference is generally best for space travel within the solar system.  

When operating within a planetary body’s sphere of influence (SOI), the sphere in which the planetary gravitational 

influence is greater than the sun’s influence, then the solar influence can usually be ignored.  In this case a planetary 

centric (geospatial reference system for the Earth) can be used.  Equation (3), gives the general relationship for the 

planetary SOI.ii 

 

𝑟𝑆𝑂𝐼 = 𝑟𝑠𝑢𝑛,𝑝𝑙𝑎𝑛𝑒𝑡 (
𝑚𝑝𝑙𝑎𝑛𝑒𝑡

𝑚𝑠𝑢𝑛
)

2
5⁄
                  (3) 

 

Fig. 1. Mars Transfer Vehicle 
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Planetary transfer uses a Hohmann transfer from Earth to Mars and a Hohmann transfer back to Earth.  The 

planetary stay is also important in calculating the possible trajectories.  An 11-month stay on the planet is assumed 

with a total mission length on the order of two to three years. This trajectory contains four main burns: trans-Mars 

injection (TMI), Mars orbit insertion (MOI), trans-Earth injection (TEI), and Earth orbit insertion (EOI). Four different 

propulsion systems were analyzed using this basic course: Low enriched uranium (LEU) liquid hydrogen (LH2) 

nuclear thermal propulsion (NTP), high enriched uranium (HEU) LH2 NTP, LEU CH4 (methane) NTP, and a 

chemical liquid oxygen (LO2)/LH2 system. 

 

For the LEU CH4 NTP and CHM LOX-LH2 cases, the mass flow rate for the main engine can be calculated from  

𝐼𝑠𝑝 by using Equation (4). 

 

 �̇�𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 = 𝑇𝑒𝑛𝑔𝑖𝑛𝑒/(𝐼𝑠𝑝𝑔0)                   (4) 

 

The mass flow rate of the reaction control system (RCS) thrusters is an important parameter in the maneuvers for 

the trajectory burns.  For the calculations in this section, the RCS mass flow rate is 7 kg/s with an 𝐼𝑠𝑝 of 291 s.  

Fig. 2 shows the exergy efficiency of the LEU LH2 NTP case during the first 500 seconds of TMI, and shows the 

decline in the efficiency during the RCS burn. Also visible in this plot is an efficiency drop just after the RCS burn; 

this corresponds to dropping an empty propellant tank. Exergy that was expended to accelerate the tank is lost when 

the tank is discarded, so dropping the tank registers as a decrease in efficiency. 

 

 
Fig. 2. Exergy efficiency during TMI 

 

Exergy calculations are sensitive to changes in position and velocity with respect to the departure and arrival 

planets, requiring a complete orbital trajectory to calculate exergy efficiency. A patched-conics trajectory is necessary 

to show the complete system and planetary environments within each planets SOI and in interplanetary space outside 

the planets SOI’s. 

2. Orbital Mechanics 

For each leg of the mission, the departure planet’s and arrival planet’s position and velocity are important for the 

periods when the spacecraft is within the planets SOI.iii Outside the planetary SOI’s, the Sun is treated as the sole 
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gravity source. Acceleration due to the sun’s gravity is broken up into vector components along the interplanetary 

trajectory path. Fig. 3 shows the spacecraft trajectory path and planets orbital paths during the mission. 

Using the planetary positions and the given position of the spacecraft at all points during the mission, the 

spacecraft’s planet-relative distance, speed, and flight angle from the horizon are calculated for the days following the 

departure burns and leading up to the arrival burns using Equations (5) – (7). 

 

𝑟𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑝𝑙𝑎𝑛𝑒𝑡 = 𝑟𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑠𝑢𝑛 − 𝑟𝑝𝑙𝑎𝑛𝑒𝑡,𝑠𝑢𝑛                (5) 

 

 �⃗⃗�𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑝𝑙𝑎𝑛𝑒𝑡 = �⃗⃗�𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑠𝑢𝑛 − �⃗⃗�𝑝𝑙𝑎𝑛𝑒𝑡,𝑠𝑢𝑛                (6) 

 

 𝜑𝑝𝑙𝑎𝑛𝑒𝑡𝑎𝑟𝑦 ℎ𝑜𝑟𝑖𝑠𝑜𝑛 =
𝜋

2
− 𝑎𝑐𝑜𝑠 (

�⃗⃗⃗�𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑝𝑙𝑎𝑛𝑒𝑡𝑟𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑝𝑙𝑎𝑛𝑒𝑡

‖�⃗⃗⃗�𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑝𝑙𝑎𝑛𝑒𝑡‖‖𝑟𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑝𝑙𝑎𝑛𝑒𝑡‖
)                        (7) 

 

Using the spacecraft’s distance from the planet over time, the exact time when it crosses the SOI boundary is 

interpolated with Equation (8). The two points in time used for the interpolation are those just before and after crossing 

the SOI boundary, the radius of rSOI defined in Equation (3). 

 

 𝑡𝑆𝑂𝐼 = 𝑡𝑖 + (𝑡𝑓 − 𝑡𝑖)
𝑟𝑆𝑂𝐼−‖𝑟𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑝𝑙𝑎𝑛𝑒𝑡,𝑖‖

‖𝑟𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑝𝑙𝑎𝑛𝑒𝑡,𝑓‖−‖𝑟𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑝𝑙𝑎𝑛𝑒𝑡,𝑖‖
                 (8) 

 

 

Fig. 3.  Spacecraft interplanetary trajectory, and planet trajectories during the outbound and inbound (return) 

phases 

 

With these values, the spacecraft’s planet-relative velocity and flight angle from the horizon at that moment are 

similarly interpolated using Equations (9) and (10). 

 

�⃗⃗�𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑝𝑙𝑎𝑛𝑒𝑡,𝑆𝑂𝐼 = �⃗⃗�𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑝𝑙𝑎𝑛𝑒𝑡,𝑖 + (𝑡𝑆𝑂𝐼 − 𝑡𝑖) (
�⃗⃗⃗�𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑝𝑙𝑎𝑛𝑒𝑡,𝑓−�⃗⃗⃗�𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑝𝑙𝑎𝑛𝑒𝑡,𝑖

𝑡𝑓−𝑡𝑖
)               (9) 

 

𝜑ℎ𝑜𝑟𝑖𝑧𝑜𝑛,𝑆𝑂𝐼 = 𝜑ℎ𝑜𝑟𝑖𝑧𝑜𝑛,𝑖 + (𝑡𝑆𝑂𝐼 − 𝑡𝑖) (
𝜑ℎ𝑜𝑟𝑖𝑧𝑜𝑛,𝑓−𝜑ℎ𝑜𝑟𝑖𝑧𝑜𝑛,𝑖

𝑡𝑓−𝑡𝑖
)             (10) 
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Additionally, a new reference frame is created based on the spacecraft’s position and velocity while crossing the 

SOI boundary, using Equations (11) – (13). Planet-centric orbits within the SOI will be plotted in a 2D plane, and this 

reference frame will track the orientation of the plane relative to the solar ecliptic. 

 

 𝑖̂ =
𝑟𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑝𝑙𝑎𝑛𝑒𝑡,𝑆𝑂𝐼

‖𝑟𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑝𝑙𝑎𝑛𝑒𝑡,𝑆𝑂𝐼‖
                (11) 

 

 �̂� =
�̂�𝑥�⃗⃗⃗�𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑝𝑙𝑎𝑛𝑒𝑡,𝑆𝑂𝐼

‖�̂�𝑥�⃗⃗⃗�𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑝𝑙𝑎𝑛𝑒𝑡,𝑆𝑂𝐼‖
                  (12) 

 

 𝑗̂ =
�̂�𝑥�̂�

‖�̂�𝑥�̂�‖
                    (13) 

 

A transformation matrix is created using the new reference frame2 and Equation (14), and will later be used to 

convert the SOI orbit back to a heliocentric reference frame. 

 𝑇𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 = [

𝑖�̂� 𝑖̂𝑌 𝑖�̂�

𝑗�̂� 𝑗�̂� 𝑗�̂�

�̂�𝑋 �̂�𝑌 �̂�𝑍

]               (14) 

 

With conditions at the SOI intersection established, the planet-centric transfer and parking orbits within the SOI 

can be determined. First, the transfer orbit’s semi-major axis is calculated using Equations (15) and (16). 

 

 𝑉𝑆𝑂𝐼 = ‖�⃗⃗�𝑠ℎ𝑖𝑝,𝑝𝑙𝑎𝑛𝑒𝑡,𝑆𝑂𝐼‖                   (15) 

 

 𝑎𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 1 ((
2

𝑟𝑆𝑂𝐼
) − (

𝑉𝑆𝑂𝐼
2

𝜇𝑝𝑙𝑎𝑛𝑒𝑡
))⁄                (16) 

 

The speed and flight angle of the spacecraft at the edge of the SOI is sufficient to define a hyperbolic orbit past the 

planet. The parking orbit periapsis is established (400 km above the planet’s surface, roughly the altitude that the ISS 

orbits at over Earth in this example). This is the minimum shift that still puts the spacecraft’s trajectory well above 

the atmosphere to avoid significant drag. Note, that aerobraking (not addressed here) requires an orbital altitude within 

the upper atmosphere with sufficient drag to reduce the spacecraft velocity (V) to enter the prescribed parking orbit. 

Equations (17) – (4.66) are used to determine the apoapsis of the parking orbit for the listed ΔV at that periapsis. 

   

 𝑒𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 1 −
𝑟𝑝𝑒𝑟𝑖𝑎𝑝𝑠𝑖𝑠

𝑎𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
                   (17) 

 

 𝑉𝑝𝑒𝑟𝑖𝑎𝑝𝑠𝑖𝑠,𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = √𝜇𝑝𝑙𝑎𝑛𝑒𝑡 (
2

𝑟𝑝𝑒𝑟𝑖𝑎𝑝𝑠𝑖𝑠
−

1

𝑎𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
)                (18) 

 

 𝑉𝑝𝑒𝑟𝑖𝑎𝑝𝑠𝑖𝑠,𝑝𝑎𝑟𝑘𝑖𝑛𝑔 = 𝑉𝑝𝑒𝑟𝑖𝑎𝑝𝑠𝑖𝑠,𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 − ∆𝑉                (19) 

 

 𝑎𝑝𝑎𝑟𝑘𝑖𝑛𝑔 = 1 ((
2

𝑟𝑝𝑒𝑟𝑖𝑎𝑝𝑠𝑖𝑠
) − (

𝑉𝑝𝑒𝑟𝑖𝑎𝑝𝑠𝑖𝑠,𝑝𝑎𝑟𝑘𝑖𝑛𝑔
2

𝜇𝑝𝑙𝑎𝑛𝑒𝑡
))⁄                 (20) 

 

 𝑒𝑝𝑎𝑟𝑘𝑖𝑛𝑔 = 1 −
𝑟𝑝𝑒𝑟𝑖𝑎𝑝𝑠𝑖𝑠,𝑝𝑎𝑟𝑘𝑖𝑛𝑔

𝑎
                  (21) 

 

 𝑟𝑎𝑝𝑜𝑎𝑝𝑠𝑖𝑠 = 𝑟𝑝𝑒𝑟𝑖𝑎𝑝𝑠𝑖𝑠 (
1+𝑒𝑝𝑎𝑟𝑘𝑖𝑛𝑔

1−𝑒𝑝𝑎𝑟𝑘𝑖𝑛𝑔
)                  (22) 
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It is important for the apoapsis to remain within the planet’s SOI and should be established to meet the parking 

orbit period necessary to meet mission objectives.  Once the apoapsis and periapsis are established, the parking orbit 

periapsis is kept as the periapsis of the hyperbolic transfer orbit. This results in an extremely elliptical parking orbit 

with a very long period (particularly if it extends to the planetary SOI boundary).  Equations (4.61) – (4.66) can be 

solved iteratively starting with an initial periapsis estimate and stepping in small increments (e.g., 100 mi periapsis 

altitude increases) until a reasonable apoapsis is found. 

The eccentricity of the hyperbolic transfer orbit, the spacecraft’s true anomaly at the SOI boundary, and its periapsis 

velocity can be calculated using Equations (17), (18), and (23). 

 

 𝜃𝑆𝑂𝐼 = acos (
𝑎𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(1−𝑒𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

2 )−𝑟𝑆𝑂𝐼

𝑟𝑆𝑂𝐼𝑒𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
)                 (23) 

 

By applying the listed ΔV at the new periapsis as a point-thrust burn, the shape of the parking orbit around the 

planet can be approximated using Equations (19) – (21). It is only an approximation because it assumes a point-thrust 

burn connects the transfer and parking orbit. As long as the chosen propulsion system is sufficiently high-thrust, the 

actual parking orbits will be quite close to the listed values here, as a sufficiently short burn time (on a timescale of 

minutes) will be negligible compared to the period of the parking orbit. 

The parking orbits are only an approximation based on point-thrust burns. In order to properly calculate the exergy 

efficiency, plots of the spacecraft’s position and velocity during each burn will be needed. To do this, Equations (24) 

and (25) can be used to track the spacecraft forwards or backwards in time from periapsis to establish its trajectory. 

Another acceleration vector from the spacecraft’s engine is added, aimed directly opposite its velocity vector at any 

point in time for backward tracking. This new vector is split into i ̂ and j ̂ components for the calculations. 

 

 𝑟𝑓 = 𝑟𝑖 + 𝑉𝑖∆𝑡 +
1

2
�̇�𝑖∆𝑡2                   (24) 

 

 𝑉𝑓 = 𝑉𝑖 + �̇�𝑖∆𝑡                    (25) 

 

At this point, a complete planet-centric course contains the spacecraft’s position and velocity from engine start to 

SOI exit (or vice versa for entry scenarios). This course is then rotated such that the SOI exit/entry point lies directly 

on the i ̂ axis of the planet-centric reference frame. Equations (26) and (27) are then used to plot the spacecraft’s 

heliocentric position and velocity while it is inside the SOI. 

 

 𝑟𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑠𝑢𝑛 = 𝑟𝑝𝑙𝑎𝑛𝑒𝑡,𝑠𝑢𝑛 + (𝑇𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑟𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑝𝑙𝑎𝑛𝑒𝑡)               (26) 

 

 �⃗⃗�𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑠𝑢𝑛 = �⃗⃗�𝑝𝑙𝑎𝑛𝑒𝑡,𝑠𝑢𝑛 + (𝑇𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚�⃗⃗�𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑝𝑙𝑎𝑛𝑒𝑡)              (27) 

3. Interplanetary Exergy Efficiency 

With the modified mass data and orbital data in hand, the actual exergy calculations can begin. During each burn 

of the mission, changes in expended exergy are calculated using Equation (28) which is taken from Equation (1), with 

mass drops for each time step being calculated from the tank drops and consumable use schedules. These step changes 

are then summed to produce a plot of expended exergy that rises during burns but otherwise stays constant. 

 

 𝑿𝒆𝒙𝒑 = ∆𝒎𝒑𝒓𝒐𝒑𝒆𝒍𝒍𝒂𝒏𝒕 (𝒉𝒑𝒓𝒐𝒑 +
 𝑽𝒆

𝟐

𝟐
)                 (28) 
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In order to calculate destroyed exergy, changes in kinetic and potential energy must be tracked across the entire 

mission. To determine whether the change in kinetic or potential energy should be positive or negative during a given 

time step, the ruleset described below in Table 1 is applied, based on Equations (29) and (30). Changes in the 

spacecraft’s velocity and distance relative to the central body during that time step are taken into consideration when 

determining the sign. It should be noted that the values X, Y, and Z in the table are all greater than or equal to one. 

 

Table 1. Sign convention for changes in kinetic and potential energy 

Mass Velocity ΔKEstep Distance ΔPEstep 

𝑀𝑓 = 𝑀𝑖 𝑉𝑓 > 𝑉𝑖 + 𝑟𝑓 > 𝑟𝑖 + 

𝑀𝑓 = 𝑀𝑖 𝑉𝑓 < 𝑉𝑖 − 𝑟𝑓 < 𝑟𝑖 − 

{
𝑀𝑓 > 𝑀𝑖

𝑀𝑓 = 𝑋𝑀𝑖
 {

𝑉𝑓 > 𝑉𝑖

𝑉𝑓 = 𝑍𝑉𝑖
 + {

𝑟𝑓 > 𝑟𝑖

𝑟𝑓 = 𝑌𝑟𝑖
 {

+  (𝑌 > 𝑋)

−  (𝑌 < 𝑋)
 

{
𝑀𝑓 > 𝑀𝑖

𝑀𝑓 = 𝑋𝑀𝑖
 {

𝑉𝑓 < 𝑉𝑖

𝑉𝑖 = 𝑍𝑉𝑓
 {

−  (𝑍2 > 𝑋)

+  (𝑍2 < 𝑋)
 {

𝑟𝑓 < 𝑟𝑖

𝑟𝑖 = 𝑌𝑟𝑓
 − 

{
𝑀𝑓 < 𝑀𝑖

𝑀𝑖 = 𝑋𝑀𝑓
 {

𝑉𝑓 > 𝑉𝑖

𝑉𝑓 = 𝑍𝑉𝑖
 {

+  (𝑍2 > 𝑋)

−  (𝑍2 < 𝑋)
 {

𝑟𝑓 > 𝑟𝑖

𝑟𝑓 = 𝑌𝑟𝑖
 + 

{
𝑀𝑓 < 𝑀𝑖

𝑀𝑖 = 𝑋𝑀𝑓
 {

𝑉𝑓 < 𝑉𝑖

𝑉𝑖 = 𝑍𝑉𝑓
 − {

𝑟𝑓 < 𝑟𝑖

𝑟𝑖 = 𝑌𝑟𝑓
 {

−  (𝑌 > 𝑋)

+  (𝑌 < 𝑋)
 

 

 

 𝐾𝐸:    𝑚𝑓𝑉𝑓
2 − 𝑚𝑖𝑉𝑖

2 = {
> 0
< 0

                (29) 

 

 𝑃𝐸:    
𝑚𝑖

𝑟𝑖
−

𝑚𝑓

𝑟𝑓
= {

> 0
< 0

                   (30) 

 

Change in kinetic and potential energy during a given time step is then calculated using Equations (31) and (32), 

where S is the sign taken from the previous table, either 1 or -1. 

 ∆𝐾𝐸𝑠𝑡𝑒𝑝 =
𝑆

2
|𝑚𝑓𝑉𝑓

2 − 𝑚𝑖𝑉𝑖
2|                  (31) 

 

 ∆𝑃𝐸𝑠𝑡𝑒𝑝 = 𝑆𝜇 |
𝑚𝑖

𝑟𝑖
−

𝑚𝑓

𝑟𝑓
|                   (32) 

 

These step changes in kinetic and potential energy are summed over time to create a running total of energy 

changes. These sums are subtracted from the expended exergy using Equation (33) to calculate the exergy destroyed, 

which then directly leads to the exergy efficiency, defined in Equation (34), at that point in time. 

 

 𝑋𝑑𝑒𝑠 = 𝑋𝑒𝑥𝑝 − ∑ ∆𝐾𝐸𝑠𝑡𝑒𝑝 − ∑ ∆𝑃𝐸𝑠𝑡𝑒𝑝                  (33) 

 

𝜼𝒆𝒙𝒆𝒓𝒈𝒚 =
∆𝒎𝒑𝒓𝒐𝒑𝒆𝒍𝒍𝒂𝒏𝒕(𝒉𝒑𝒓𝒐𝒑+

 𝑽𝒆
𝟐

𝟐
)−𝑿𝒅𝒆𝒔

∆𝒎𝒑𝒓𝒐𝒑𝒆𝒍𝒍𝒂𝒏𝒕(𝒉𝒑𝒓𝒐𝒑+
 𝑽𝒆

𝟐

𝟐
)

= 𝟏 −
𝑿𝒅𝒆𝒔

∆𝒎𝒑𝒓𝒐𝒑𝒆𝒍𝒍𝒂𝒏𝒕(𝒉𝒑𝒓𝒐𝒑+
 𝑽𝒆

𝟐

𝟐
)

  (34) 

 

 

When the spacecraft is within a planet’s SOI and not burning propellant, efficiency does not stay constant, but 

fluctuates with the planetary gravity influences as the vehicle and planet both move along their respective trajectories. 

This is avoided by using a patched-conics model for the orbital modifications, where exergy calculations are applied 
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to each SOI independently, not using the heliocentric portion of the trajectory. Whenever the spacecraft crosses into 

or out of a SOI, the most recent value for the total change in kinetic and potential energy is carried over to the next 

series of calculations. This ensures that exergy efficiency stays constant whenever the spacecraft’s mass and velocity 

are constant, even across SOIs. 

The final exergy efficiency plots over the whole mission for each propulsion system are given below in Fig. 4 

through 7. 

  

 
Fig. 4.  Exergy efficiency throughout the mission using the LEU LH2 NTP system. 

 

As seen previously in Fig. 2, exergy efficiency will sharply rise when using a main engine during a departure burn, 

and then decrease during the following RCS burn. This is because of the RCS burn’s lower Isp, destroying more exergy 

for the same exergy expenditure, thus lowering the efficiency of that stage of the mission. Efficiency also drops when 

ejecting an empty propellant tank or spent consumables, as the exergy expended to move those components up to 

speed is lost when they are discarded. 
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Fig. 5.  Exergy efficiency throughout the mission using the HEU LH2 NTP system. 

 

 

 
Fig. 6.  Exergy efficiency throughout the mission using the LEU CH4 NTP system. 

 

Unlike the departure burns, braking burns when arriving at a planet show exergy efficiency decreasing during both 

the main burn and RCS burn. This is due to how sign conventions for kinetic and potential energy are defined, as well 

as what equation is being used for exergy efficiency. Both of the definitions used by the program were detailed in the 

previous section. However, Equation (34) assumes that the vehicle is expending exergy to build up speed. By that 

definition, any exergy expenditure to shed speed, as in a braking burn, is detrimental to exergy efficiency.  
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Fig. 7.  Exergy efficiency throughout the mission using the CHM LOX-LH2 system. 

 

It is possible that different sign conventions for kinetic and potential energy or a different definition of exergy 

efficiency, used only during braking burns, could show an increase in exergy efficiency during braking. That is future 

work to investigate the exergy efficiency relationships for braking maneuvers. 

 

Table 2. Final exergy efficiency results for all propulsion systems analyzed. 

 LEU LH2 NTP HEU LH2 NTP LEU CH4 NTP CHM LOX-LH2 

𝜂𝑒𝑥𝑔  (𝑚𝑎𝑥) 47.63% 47.68% 41.20% 31.83% 

𝜂𝑒𝑥𝑔  (𝑡𝑜𝑡𝑎𝑙) 10.61% 10.62% 9.69% 8.18% 

 

Notable efficiency values are given above in Table 2. The maximum exergy efficiency achieved (during the TMI 

burn) is shown in the top row.  The second row shows the total exergy efficiency achieved from the TMI departure 

burn through parking orbit insertion (EOI) burn at the return to Earth.  

Overall, exergy efficiency roughly scales directly with Isp and inversely with the total initial mass of the spacecraft. 

HEU LH2 NTP achieves the highest efficiencies, but only just barely, since it has the same Isp as the LEU LH2 NTP 

case and is only minimally lighter due to reactor sizing to produce the same thrust. CHM LOX-LH2 has the lowest 

efficiencies by far, since its Isp is considerably less than the other cases. 

4. Summary 

Exergy efficiency provides a mechanism to compare different system options in a clear and effective manner across 

the full system operational environment.  This provides a Measurement of Performance (MoP) for systems engineers 

to use in comparing very different system options.  This concept has been demonstrated for interplanetary transfer 

vehicles comparing 4 different system configurations.  The result allows a balanced comparison between the 

options, informing system engineers of the best balanced system to select for the given application.  The analysis of 

interplanetary transfer vehicles shows that NTP options are more efficient than chemical propulsion options, and 

NTP with liquid hydrogen as a fuel is more efficient than methane as a fuel.  This also shows only very small 

difference between LEU NTP and HEU NTP.  This provides key system characterization to support the selection of 

configuration for interplanetary transfer missions. 
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